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INTRODUCTION
The primary motivation of this research is to provide real-time human cognitive state
estimation and apply it to adaptive decision aiding in complex task environments. This
paper investigates one of many barriers to real-time classification of operator state.
Specifically, it is necessary to identify the proper features used by the classifier model.

Classification of operator mental workload has numerous applications in the fields of
human factors engineering, training, testing, and evaluation. For example, knowledge of
a pilot’s state in an advanced fighter aircraft could be used to increase system efficiency
and effectiveness by using this information as real-time guidance for an adaptive control
system. In-flight cognitive load is merely one concern of USAF researchers.
Uninhabited Air Vehicle (UAV) and Uninhabited Combat Air Vehicle (UCAV) operators
may experience performance degradation during mission segments with high cognitive
load. In addition, an understanding of cognitive workload could aid in development of
human-computer interfaces by providing metrics of operator state. Accurate and reliable
assessment of operator state is the key to successful implementation of adaptive
automation or design evaluation. Several approaches have been applied to this problem,
such as Baysian estimation and linear statistical techniques; none of which have achieved
the required accuracy or reliability required for implementation.

Neural networks have several potential advantages that make them attractive for use
as classifiers of operator state. They are adaptive and nonlinear, and they have the ability
to generalize. Because of the inherent nonlinearity and the complex interactions among
the features of cognitive activity during highly dynamic multiple task situations, accurate

workload classification is difficult. In addition, the relationships between physiological




variables and performance are not well understood; therefore, the relevant features for
classification are not known. Consequently, adaptive neural networks are an ideal choice
for classifying mental workload in complex, real-world situations.

Neural networks have been used in classification of cognitive workload in several
studies. Anderson, Devulapalli, and Stolz (1995) investigated single task workload

_classification using alpha band activity and autoregressive methods. Gevins, Smith,
Leong, McEvoy, Whitfield, Du and Rush (1998), using EEG and artificial neural network
classifiers, manipulated low, moderate, and high working memory load states and
compared each load pair in the classification process. Cognitive workload estimation
was investigated using EEG band activity and neural networks during a simulated landing
task (Russell, Monett and Wilson, 1996, Greene, Bauer, Kabrisky, Rogers, Russell and
Wilson, 1996), during simulated air traffic control (Russell and Wilson, 1998), and in an
air to ground Scud hunt mission (Russell, Reid and Vidulich, 2000).

An important consideration in classification is determining the input features. This
feature selection is essential for any classification problem or algorithm, be it nonlinear
(neural networks) or linear (stepwise discriminant analysis). Some input features may be
redundant because they are highly correlated or duplicated with only scalar differences.
Others may fail to provide any useful information for discrimination. Decreasing the
number of input features by removing redundant or meaningless inputs reduces the
computation required for training.

Reducing the number of features also reduces the number of exemplars or samples
necessary for adequate learning by the classification algorithm. The “curse of

dimensionality” abounds in pattern classification problems such as cognitive load state



estimation. The psychophysiological signals, such as electroencephalogram (EEG),
electo-oculogram (EOG), and electrocardiogram (ECG), collected in this study produce a
gamut of derived features. As the number of input features increases, so do the number
of training examples necessary to estimate the free parameters of the model.

This paper investigates three methods of input feature reduction. Principal

_component analysis (PCA), the Ruck weight-based partial derivative method, and a

weight-based signal-to-noise ratio (SNR) method are compared using two types of
derived input features (power variables and dimensionless variables). Input features
selected by each method are presented to a multilayer perceptron artificial neural network

for classification of two states of cognitive load.




METHODS
Subjects
Data from five naive participants (designated as s01, s02, s03, s04, and s05) were
collected, with all participants completing an approximately hour-long scenario for each
~of two days of data collection following familiarization training. Participants were paid

for their participation.

The Multi-Attribute Task Battery Crewmember Simulator
The Multi-Attribute Task Battery (MATB) interactive software developed by NASA was
used in this experiment (Figure 1). The MATB simulates tasks analogous to those a
flight crewmember would encounter (Comstock and Arnegard, 1992). Tasks included
monitoring, tracking, communication, and resource allocation responsibilities in a
continually changing environment. These represented the same tasks performed by a
UAYV or UCAYV operator. Each subject trained on MATB for several days until a
consistent level of proficiency was achieﬂzed. Proficiency was declared when the
performance parameters asymptote to minimum errors. This procedure helped to reduce

potential learning effects and allowed subjects to achieve a desired level of familiarity

and comfort with the laboratory setting.
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Figure 1. Sample MATB simulation display
Data Collection
Eight channels of EEG data were recorded at sites positioned according to the
International 10-20 electrode system (Jasper, 1958). Mastoids were used as references.
Electrode impedances were below 5K ohms. Each EEG channel was corrected for eye
movement and blinks and the frequency spectrum was calculated and stored at each one- |
second interval. Eye blink, heart, and respiration intervals were also collected.

During each recorded scenario, subjects were presented a randomized sequence of
low and overload cognitive workload levels. Two data collection runs were designated as
training data for the classifier and consisted of 10 minutes of low and high workload (five
minutes at each level). Two additional runs of data collection were designated as
validation and testing sets for the classifiers and consisted of 15 minutes of alternating

low and high cognitive load during both days of data collection. The experiment




monitored and recorded performance measures of required MATB tasks and
psychophysiological data from each test subject.
PROCEDURE
Feature Extraction
Feature extraction is the processing of raw data into sets of measures that quantify
‘a group of states for classification. It provides no additional information to the classifier

algorithm; theoretically, using the raw data for the classifier would provide the best

i
-

1

results. Due to the quantities of data, the required dimensionality of the artificial neural
network (or indeed any classifier) makes using the raw data impractical. In practice we
must develop a set of features that are manageable and reliable and that produce desired
accuracies. Power of the EEG and intervals of the peripheral physiological

|
| measurements were used.
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Figure 2. Sample EEG recording and traditional EEG bands




The frequency spectrum for each one-second interval was separated into the five
traditional bands of EEG: delta (DC-3 Hz), theta (4-7 Hz), alpha (8-12 Hz), beta (13-30
Hz) and gamma (31-42 Hz). The time series representations of these bands are shown in
Figure 2.

The data were segmented into forty-second windows with 2 35-second overlap as

_shown in Figure 3. Parseval’s Theorem states that the integral of the magnitude square of
a time series is equal to the integral of the magnitude square of the time series Fourler
coefficients. In other words, the energy in the time domain is equivalent to the energy in
the frequency domain. Making use of this theorem, we determined the log power of each
band using

P=10%log(S F(w)*). 1)
Log power of delta, theta, alpha, beta and gamma from the eight sites were used,
resulting in 40 features as inputs to the neural network. Three physiologically based
features, the interval between eye blinks, interbeat intervals, and the interval between
breaths, were also used as input features, resulting in 43 inputs.

Dimensionless features are recommended by most pattern recognition texts
(Duda, Hart and Stork, 2001). Power ratios for the EEG bands and intervals relative to a
resting baseline for heart, eye and respiration were calculated and used as inputs to the
classifier. The power ratios were calculated for each EEG band with respect to the total
power of the EEG spectrum. The interblink, interbeat, and interbreath intervals were
adjusted relative to an average resting baseline value. These manipulations provided 43

dimensionless features to be used by a classifier.
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Figure 3. Description of moving window

Artificial Neural Network

A feedforward backpropagation neural network was used in this study (Widrow
and Lehr, 1990; Lippmann, 1987). A backpropagation neural network classifier maps
input vectors to output vectors in two phases. First, the network learns the input-output
classification from a set of training vectors. Then, after training, the network acts as a
classifier for new vectors.

The backpropagation algorithm initializes the network with a random set of weights

for each fully connected layer, then the network trains using the input-output pairs.
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Figure 4. Network architecture showing a fully connected network with the number of
neurons in each layer. The form of the logistic sigmoid activation function is

provided.

The learning algorithm uses a two-stage process for each pair: forward pass and
backward pass. .The forward pass propagates the input vector through the nctwork until it
reaches the output layer. First, the input vector propagates to the hidden units. Each
hidden unit calculates the wei ghted sum of the input vector and its associated
interconnection weights. Each hidden unit uses the weighted sum to calculate its
activation. Next, hidden unit activation propagates to the output layer. Each node in the

output layer calculates its weighted sum and activation. Figure 4 shows the forward pass




and Figure 5 is 2 typical unit featuring the summation anc the activation. The output of
the network is compared to the expected output of the input-output pairs; their difference
defines the output error. In the second stage of network training, the output error
propagates backward to update the network weights. First, the error passes from the
output layer to the hidden layer updating output weights. Next, each hidden unit
_calculates an error based on the error from each output unit. The error from the hidden
units updates the input weights. One training epoch passes when the network processes
all the input-output pair in the training set. Training stops when the sum-squared error is

acceptable or when a predefined number of epochs is executed.

q
a= Zwl,ipi +b
i=1

P fla)—>

Figure 5. Individual neuron showing the weighted sum of the inputs followed by the

logistic sigmoid activation function, f{a).
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m - _
E= Y Z.-1. , 2

where m is the size of the training set, z is the neural network output vector, and 1 1s the
expected output for each training input-output pair L.

It may be simpler to examine the algorithm as a series of steps. The steps for
implementing a backpropagation neural network are as follows (Lippmann, 1987):

(1) Initialize the weights (w;) and biases (b;) where i is the current iteration.

(2) Present the input matrix (p) and the target vector (7).

(3) Calculate the output of the network (z;).

(4) Calculate the error (¢ = z;—1).

(5) Determine the new weights (wi.;) where i+1 is the next iteration.

(6) Determine the ﬁew learning rate.

(7) Repeat steps 2 through 5 until desired error is achieved.

Mathematically, these steps were as follows: (Haykin, 1999; Widrow and Stearns,
1985; Widrow and Lehr, 1990). The weights and biases were initialized using a random
number generator and limiting the values to the range —0.5 to 0.5, which is the nearly
linear region of the hyperbolic sigmoid activation function.

The input data were normalized to zero mean and unit standard deviation using

pn(i) = }l(l);ﬂ , (3)
o

where pn is the normalized input vector, p is the input vector, 4 and o are the mean and
standard deviation for each feature, and i represents the i™ exemplar. The target vectors

were assigned based on the a priori target output class. The class target output neuron

11




was assigned 0.9 and the other target output neuron was assigned 0.1. The target vectors
were [0.9 0.1] for low workload and [0.1 0.9] for the high workload condition.

The output of the network is determined by propagating the normalized input
through each layer of the backpropagation neura! network. It is necessary to examine the
output of an individual neuron and then expand that understanding to the framework of

‘the entire network. As shown in Figure 5, the output of the individual node or neuron is

2=f(2) )
and
a =Z(w;jpj —I—b), &)

where w; is the weight, p; is the input, and b is the bias and fla) is the activation function
acting on a. The figure suggests this neuron is in the input layer since the leading index
on the weight is 1. Generalizing to any neuron results in

Zj = f(aj) (6)

and

aj:z(wijpj+bj). @)

j=
Activation functions can be linear or nonlinear. A common activation function is a
sigmoidal nonlinearity. In our case, it is a logistic sigmoid function with an output range
0< f(a)<1in the form

1

Tlte ®)

f(a)

The error is simply the difference between the output of the network and the

expected target value:

12



E =Y (1), ©)

where % is the error for the current input exemplar.
We can adjust the weights and try to minimize the error E; through the backward

path. Although the activation function is nonlinear, it is differentiable and we can

X

.compute , which we will make use of in our selection of a learning rule. The

W i

network algorithm is an extension of the Widrow-Hoff learning rule (Widrow and Lehr,
1990), which is a gradient descent algorithm based on Widrow’s earlier work in Adaline
and Madzline neural networks. This rule adjusts the weights using a steepest descent
algorithm,

oE
wij(n)zng(n_l)_lu_éw—ij’ (10)

where u is a constant that controls the speed of convergence (learning rate).

Adaptive learning and momentum were used to decrease the time required for
training the networks and to ensure the network reaches a global mimina. Typically,
gradient descent methods use a fixed learning rate to control the rate of convergence.
However, it is difficult to determine an optimum rate. If the fixed learning rate is too
large, the gradient descent algorithm becomes unstable due to oscillations. If the learning
rate is too small, the incremental steps along the error surface are small and in turn the
algorithm takes a long time to converge to the desired error. Adapting the learning rate to
optimize the learning progress can maintain stability while keeping the learning rate as
large as possible to improve the rate of convergence. As the slope of the local error

surface increases, the learning rate decreases to control stability.

13




Momentum prevents the network algorithm from becoming trapped in a local
minimum. Essentially the algorithm will “jump over” or ignore smell perturbations in the
error surface. Modification of the delta-learning rule to include momentum results in a

new learning rule

w, () = o (n=1) = pr— (11)

i
where o is the momentum and u is the learning rate.

This process is repeated until a desired error is achieved. The desired error is
problem specific and must be determined. We determined our target or desired error by
the validation method. The neural nets were optimized by a validation method. The data
were segmented into threc data sets: a training data set, a validation set, and a test data
set. During training, the neural network adjusted the weights and biases based on the
training data set. After each adjustment the weights were tested on the validation set and
once the network reached a minimum solution the test set was used to evaluate the final
weights. The training and the validation error initially follow the same path unﬁl at some
point the neural network begins to learn the idiosyncrasies of the training data set. The
error for the training data continues to decrease after this point, but the validation error
increases due to the neural network overlearnjng the training data. The ideal stopping
point for training the neural network is the minimum validation error.

Once trained, network weights are fixed and the net acts as a pattern classifier.

As a classifier, the network examines input vectors it has never seen and predicts the
class of the input vector.

The number of nodes in the input layer, the hidden layer and the output layer

defines the neural network used in this study (See Figure 4). The number of input units

14




and the number of output units are problem dependent. Initially, in our case, the input
layer consists of 43 neurons representing the 43 features that form the full input space.
The output layer consisted of two neurons since the number of classes existing in the data
determined the size of the output layer. The number of hidden units required is usually
not known. Hidden units are the key to network iearning and force the network to
.develop its own internal representation of the input space. The network that produces the
best classification with the fewest units is selected as the best topology. A net with too
few hidden units cannot learn the mapping to the required accuracy since the smaller
hidden layer would limit interaction of the input space. Too many hidden units allow the
net to ‘memorize’ the training data and will not generalize well to new data. We used 43
neurons in the hidden layer.

After completion of the feature reduction, twenty neural networks were trained
randomizing both the training data order and initial weights. These neural networks
maintained the same architecture described above with the exception of the number of
neurons in the input layer. In each case the number of neurons in the input layer
represented the number of salient features determined after the feature reduction methods

were applied.

Principal Component Analysis
Principal component analysis (Jolliffe, 1986 and Flury, 1988) was used to reduce the
number of input features presented to the artificial neural network classifier. PCAis a
useful technique for multivariate analysis that can 1) transform correlated variables into

uncorrelated variables, 2) determine linear combinations that have the maximum range of

15




variability, and 3) reduce cata. We take advantage of all three properties in this study,
but primarily the PCA was used for data reduction.

PCA projects the data on the direction of each of the eigenvectors determined by the
eigenvalues of the characteristic polynomial of the covariance matrix. First the
covariance matrix is determined. The characteristic polynomial of the covariance matrix,
.C, is determined by

C-il=2 a7 +ta, jra, =0, (12)

where / is an identity matrix of the same order d as the covariance matrix C. The roots A
of the characteristic polynomial are the eigenvalues, and each eigenvalue has an
associated eigenvector. The eigenvalues are ordered by size from the largest to the
smallest and become the principal components of the covariance matrix.

The largest principal component is the eigenvalue that accounts for the largest
variance of the covariance matrix. Therefore, the first (largest) principal component is
the projection on the direction in which the variance of the projection is maximized.
Selecting only the largest eigenvalues and their associated eigenvectors reduces the input
space. The number of eigenvalues used in this study is the number of eigenvalues that
explain more than 80% of the cumulative variance of the covariance matrix. The input
features to the classifier are the 43 derived features projected onto those eigenvectors
whose eigenvalues account for more than 80% of the explained variance. Therefore, .the
input features are linear combinations of the derived features weighted by the scalar

components of the eigenvector or the factor loadings of the significant principal

components.
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Partial Derivative Method
The Ruck saliency measure (Ruck, Rogers and Kabrisky, 1990) was used to
determine which features provide information for the classification algorithm. This
technique calculates the partial derivative of each layer and rank orders the features based
on the saliency measure. In essence, this method provides an input-output reiationship
‘between the network output iayer and the input features. This partial derivative method
is possible because 2lthough the activation function is nonlinear, it is differentiable. The
derivative of the activation function (equation 8) used in this study is
fay=fl@l-f(a). (13)
Feature saliency is based on the concept that a fully trained network contains all the
information for describing the relative importance or saliency of each of the input
features. The partial derivatives look cumbersome but can be readily calculated using the
chain rule and are easily implemented in vector form. These calculations are performed

starting with the output layer. The partial derivative for the output layer is
Vs = f(@) (14)
=a),(1-a),), (15)
where k3 represents each output neuron and, in our case, the output layer is the third

layer. Recall from equation 7 that a represents the weighted sum of the inputs to the

activation function plus the bias or threshold. The second or hidden layer is more

complex:
7/132 = f'(ag, )Z }’fzwiz (16)
K2
= afz(l_afz)z YeaWiea - (17)
2
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In this case, k2 represents the second layer nevrons. The input layer has the same form as

the second or hidden layer:

7&: = f,<a~)z 75:1”"5: (18)
=a; (1-a)> 7ews, - (19)

'Finally the partial derivative for the entire neural network is

3

oz o
3= D 7¥, (20)

Combining equations 13 through 19 yields

-} a i ]
Wi W . 21)
|

- —

oz, D R R . 1.
==Y a0y ah0-al)Y ek (-al)bd,
: I = 3 k2

Once the partial derivatives have been calculated the saliency can be determined for

each feature as

r-Yy

poJ

(22)

b

where T'; is the saliency for the ith feature, j ranges over the outputs and p ranges over the
exemplar vectors in the training set.

Feature reduction was accomplished by an iterative approach. A network was trained
using all the features described in the feature selection portion of this paper. The partial
derivative saliency was calculated for each feature. The features were then rank ordered
based on the computed saliency. The least salient feature was removed from the input
matrix and the networks were retrained using the reduced feature set. This sequence was
repeated until the only one feature remained. The minimum data set is the smallest set

that has the highest classification accuracy.
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Signal-to-Noise Ratio Method
The SNR saliency measure was used to quantitatively assess the saliency of each
feature (Bauer, Alsing and Greene, 2001). This measure compares the input layer
weights of an individual input feature to the weights of an injected noise feature.
Theoretically, the measure will be significantly larger than zero for salient features and
_close to or less than zero for insignificant or nonsalient features. This method uses a fully
trained network to determine the importance or saliency of each of the input features to
the artificial neural network. The weights of each feature are evaluated with respect to a
random noise variable injected into the artificial neural network. The features with high
signal-to-noise ratio provide more information for classifying the target patterns than
those with lower signal-to-noise ratios. The features with a negative signal-to-noise ratio
provide little or no information for pattern classification since the signal-to-noise ratio of

the injected random noise is zero. The SNR saliency metric is

(")
W]
=1

SNR. =10-log,,| -—— |, (23)

Z (W;v,j )2

J

where SNRi is the valué of the saliency metric for feature i, j is the number of hidden
nodes, w'; j is the weight from node i to node j, and wy;; is the first layer weight from the
noise node N to node j. The injected noise has a Uniform (0,1) distribution.

The SNR metric can be used to rank order input features. If a given feature is not
relevant to a neural network output, the updates of the first layer weights from the node
of that feature should be random and fluctuate close to zero. On the other hand, if a given

feature is relevant, the weights should be adjusted away from zero until error in the
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network is minimized. Thus, the resulting SNR saliency metric should be significantly

larger than 0.0 for salient features and close to 0.0 for non-salient features. The SNR

saliency metric allows the comparison of the saliency of each feature to that of a baseline

noise feature. This comparison, in turn, allows the SNR metric to be calculated and used

at any time during network training.

The steps for implementing the signal-to-noise ratio saliency screening method is as

follows:
(D
@)
3)
(C))
&)
6
Q)
8
®

Introduce a noise (Uniform(0,1)) feature p,, into the feature set.
Normalize all features.

Initialize the weights and biases.

Select training, validation and test sets.

Initiate backpropagation traiﬁing algorithm.

Terminate training upon weight stabilization.

Compute classification accuracy of the test data set.

Compute SNR for each feature.

Remove the feature with lowest SNR.

(10) Repeat steps 5 through 9 until all features are removed.

(11) Determine the smallest set of features with the highest classification.
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RESULTS
Initial interpretation of the principal component analysis applied to the power variables
revealed day-to-day variations of the data. Figure 6 shows a plot of the first two principal
éompoﬁents (factors) for a subject. The data are clustering by day as well as by operator
state, which was observed for most of the subjects. In an attempt to eliminate the day-to-
_day variation of the psychophysiological data, new dimensionless input features were

derived as described in the feature extraction section above.
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Figure 6. Sample subject showing day-to-day variations in the power input variables.
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Using dimensionless features did produce the desired result of minimizing or
eliminating the day-to-day variation. However, while reducing the day-to-day variation,
the separation of the two cognitive states was also reduced (see Figure 7). Classification
accuracy suffered by over ten percent as shown in Table 1.

Not only day-to-day variability but also subject-to-subject variability was

_investigated. Previous work (Russell and Wilson, 1998, Russell, Reid and Vidulich,
2000) indicate that individual classifiers must be developed for each participant due to
the variability of the input features between participants as well as the number and
identity of salient features. Figure 8 is a plot showing the clustering of the first two
principal components by subject. The components were computed using the covariance

matrix of the combined training data from all five subjects.
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(@ (b)
Figure 7. Sample subject comparing a) power input variables and b) dimensionless input

variables.
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Mean classification accuracies were submitted to a 2 (input variable type) X 3
(feature selection method) X 20 (repetition) repeated measures ANOVA. Significant
sources of variance resulting from the analysis included a main effect of inpuz variable
type, F = 10.09, p < 0.05 and a significant inpur variable type X feature reduction method
interaction, F = 4.71, p < 0.05. No significant main effects of feature reduction method

.or repetition were noted. Post hoc pairwise comparisons of the feature reduction method
and inpuz variable type revealed the power variable accuracies were independent of

feature reduction method.
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& Subject 1
3 T S P PP PPPPRS * Subject 2 H
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-10 -8 6 -4 -2 0 2 4 6 8 10

Factor 1

Figure 8. PCA projections indicating the data are clustering by subject.
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Table 1. Classification accuracies by subject, input feature type and feature selection
method. '

Dimensionless Variables Power Variables
Subject PCA Ruck SNR PCA Ruck SNR
1 86.9 91.7 87.7 93.5 89.7 86.5
2 84.5 934 79.4 95.0 95.7 97.3
3 82.8 79.6 66.7 98.0 96 96.5
4 67.8 71.0 59.9 71.0 71.1 78.7
5 73.3 83.4 77.1 85.2 92.6 89.5
Average 79.1 83.8 74.2 88.5 89.0 89.7

Table 2 shows the number of input features used by each method for both the power
and dimensionless data. The Ruck weight-based partial derivative method with power
variables required almost three times as many features to classify the cognitive state as
did the PCA and SNR methods. The dimensionless variables required about the same
number of features to classify the cognitive state. However, using power variables as
inputs to the neural network classifier produced the same classification regardless of
feature selection method. The Ruck partial derivative method produced the best results

(83.8% correct classification) when using dimensionless variables.

Table 2. Number of input features used by input feature type and feature selection
method.

Power Variables Dimensionless Variables
PCA 8 10
Ruck 22 9
SNR 7 13

The saliency values of each of the significant features were averaged across subject
and rank ordered from highest to lowest saliency. The electrode site locations of the
salient features for each of the feature saliency methods and input variable type are

presented in Figure 9. The Ruck partial derivative method used five of the eight EEG
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electrode sites in addition to eye blink activity and interbreath interval when using power
variables as input features. The use of dimensionless data reduces this number to three of
eight EEG sites and retains eye blink activity as salient sites. The signal-to-noise ratio
method increased the number of psychophysiological measures when using
dimensionless data. Six of eight electrode sites were used along with interbeat,

.interbreath, and interblink intervals.

(©) (d

Figure 9. Salient feature selected by (a) Ruck power variables, (b) SNR power variables,

(c) Ruck dimensionless variables and (d) SNR dimensionless variables.
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The EEG frequency band most prevalently selected as salient was the beta band
followed by the delta and gamma bands. These three bands represent the two extremes of
the frequency spectra, specifically DC to 4 Hz and 13 to 42 HZ. The cognitive
psychology literature typically associates alpha and theta EEG bands with changes in

cognitive load. Both of these variables were selected with the least frequency by all

feature selection methods used in this study.

M Ruck Power
E1SNR Power
1 Ruck Dimensionless
[OSNR Dimensionless

Frequency

F

T T «'
Delta Theta Alpha
EEG Band

Figure 10. Frequency of EEG band selection associated with variable type and feature

selection method.
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DISCUSSION
Feature reduction can be accomplished, resulting in a significant decrease in the
dimensionality of the neural network model. This reduction not only decreases the
amount of training data required by the model but also reduces the training time for the
multilayer perceptron. For this study, the selection of a feature reduction method has no
_bearing on the level of classification accuracy when using the derived power variables.

This study indicates that principal component analysis is probably a better choice
of input feature selection method for 2 number of reasons. The partial derivative method
and the signal-to-noise ratio method selected different subsets of the total input space for
each individual participant. The number and identity of salient input features varied
considerably not only between participants but additionally varied between methods of
feature saliency selection. This result indicates that the number of electrodes cannot be
reduced, since the location and identity of electrode sites vary by subject. PCA does not
require the removal of inputs, since this method uses a weighted linear combination of all
measures and only the combinations that contribute to the majority of the explained
variance are used.

Another advantage in using PCA for input feafure reduction is it’s computational
efficiency. Both the weight-based partial derivative method and the signal-to-noise ratio
method require the training of multiple neural networks to determine feature saliency and
removal of nonsalient features. Increasing the number of input features increases the
number of neural networks to be trained. PCA does not require an artificial neural

network for selecting salient features: input feature selection is based on those weighted
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linear combinations of derived measures that account for the majority of the variance in

the covariance matrix.

An additional advantage of PCA is the number of eigenvalues that explain 80% of
the variance is robust. Eight weighted linear combinations of the power variable input

space were required to explain 80% of the variance of the covariance matrix. This

_number varied by less than one eigenvalue across subjects. The Ruck partial derivative

method used 22 input features that varied by as much as six features across subjects. The
SNR method required seven features and that number varied by as much as eight features
across subjects.

The very principles that create advantages for the PCA approach produce 2
number of disadvantages. A disadvantage to principal component analysis is that this
method does not directly reduce the quantity of data that must be collected. Both the
weight-based partial derivative method and the signal-to-noise ratio method' will reduce
the number of electrodes applied to the participant. Another disadvantage to PCA is
there is no direct relationship between the cognitive state énd the frequency bands of each
individual electrode site. For example, it is much more difficult to determine if a

significant factor in determining cognitive load is an increase in T5 beta power.
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